EPIGENOMIC MODIFICATION

OVERVIEW of the METHYL CYCLE

TRANSCRIPTION and TRANSLATION

TRANSCRIPTION FACTOR and PROMOTERS

Nuclear Factor Kappa Beta

Activator Protein-1

Nrf2

CHANGING EXPRESSION of the HUMAN TEMPLATE

Time Frame	Process	Example
Instantaneous	Post-Translational Modification	pAMPK → pHMG CoA-Reductase
Intermediate	Histone Modification	Turmeric Anti-Inflammation
Lifetime	DNA Methylation	Silencing Oncogenes
Generational	SNIP Experimentation	MTHFR

DNA Methylation critical towards:

- Silencing fetal appropriate (oncogenes) and Imprinting
- X-Inactivation
- Silencing parasitic DNA
- Preparing for life stresses (taking cues from maternal physiology)
- Shielding genes from oxidative damage

HISTONE CODE

DNA METHYLATION

DNA Methyl Transferases transfer CH₃ from SAMe to cytosine within CpG pair

- DNMT3A and DNMT3B de novo patterns during gestation
- DNMT1 replicates Methylgenome during cell division

mCpGs bind to MBDs (Methyl-CpG Binding Domain Proteins)

MBDs bind to HDACs (Histone Deacetylases)

HDACs remove acetyl groups from lysine within histones \rightarrow imparts (-) charge

Negatively charged histones collapse onto (+) mCpG containing segments of DNA

- \Rightarrow Gene Silencing (DNA Polymerase cannot bind promoters)
- \Rightarrow Gene protection from oxidative attack

DNA METHYLATION

60-90% of mammalian CpGs are methylated

CpG islands - Unmethylated clusters of CpG-enriched DNA

- Reside within gene promoter regions
 - Unmethylated promoter $CpGs \approx Active gene$
 - ◆ Methylated promoter CpGs ≈ Inactive gene

DNA DEMETHYLATION

DNA Demethylation:

- Slow Process
- Neutralized by DNA remethylation
- Methylgenome changes only slowly (decades)

Ten eleven translocation enzymes (TETs)

- Oxidize $5mC \rightarrow 5$ -OHmethylcytosine $(5hnC) \rightarrow 5$ -formylcytosine
 - \rightarrow 5-carboxylcytosine (5caC), which is decarboxylated to cytosine
- 5acC can be removed by thymine-DNA glycosylase (TDG)

TETs protective factor vs. age and disease-related hypermethylation

DNA METHYLATION

Global DNA Demethylation

- Gametogenesis
- Pre-Implantation

DNA methylation during gestation \approx anticipated post-natal environment

- Cues from maternal physiology
- Perturbations \rightarrow Life long effects on offspring

DNA METHYLTRANSFERASES

DNMT3 active during embryogenesis

- Silenced post-embryogenesis CpG methylation at its promoter site
- Like other genes active in fetal development (reactivate \rightarrow oncogenes)

DNMT1

- Copies Methylgenome pattern established by DNMT3 in utero
- Suppresses DNMT3 via promoter CpG methylation

DNMT1 highly regulated:

- Targeted by multiple transcription factors
- Can be methylated, phosphorylated, acetylated, and ubiquinated
- Activated by and dependent upon SAMe
- Inhibited by SAH

 \Rightarrow SAMe:SAH determines efficiency/fidelity of DNA methylation

EPIGENOMIC DRIFT

Identical twins have identical methyl genomic patterns at birth

• Disparity with age related to differing adult environments/physiologies

Epigenomic drift age-related:

- Age prediction within five years
- Process accelerated by abnormalities in SAMe:SAH
 - Why high homocysteine associated with diverse disease states
- DNA global hypomethylation \approx frailty and loss of physiologic function
- Global hypomethylation predicts 7-yr decline in health status
- Patterns associated with specific disease states
 - NPTX2 un silenced in PD and pancreatic cancer
- Caloric restriction ≈ maintenance of Methylgenome

DNA METHYLATION

Drosophila melanogaster has a single DNMT:

- Over expression increases life span and resistance to oxidative stress
- Under expression decreases lifespan

Honeybees: DNA of workers and queens is the same Royal jelly fed to "Queen selected" larvae

- Larger, functional ovaries, and longer lived
- Altered 5mC content vs. worker bees

Treat larvae with siRNAs for DNMT3 \rightarrow

• Queen phenotype and mC pattern

OP-1 protein is human cartilage growth factor

• Four fold loss with aging • Methylation of CpGs within promoter

Procaine demethylates DNA

- Inhibits growth of breast cancer cells
- Demethylates hypermethylated CpG islands
- Reactivates previously silenced (RARBeta2) tumor suppressor genes
- Beneficial effects (hydralazine) in human cervical cancer trial

NUCLEOSOME

147 bp of DNA Octomeric core of histone proteins Two H3-H4 dimers surrounded by two H2A-H2B dimers

TURMERIC is a HISTONE DEACETYLASE

Inactivates threat response genes

Inappropriately activated by "pseudo-infection" cues

DISTORTION of the METHYLGENOME

Cancer and age-related illness associated with:

- DNA global hypomethylation \rightarrow Activation of oncogenes
- Promoter hypermethylation \rightarrow Silencing of tumor-suppressive genes

HYPOMETHYLATION LEADS TO HYPERMETHYLATION?

I was for methylation before I was against it

HYPOMETHYLATION LEADS TO HYPERMETHYLATION?

DNMT3 involved in de novo DNA methylation

- Active during and inactive post-embryogenesis
- Methylation of its promoter suppresses its transcription

DNMT1 maintains birth pattern \rightarrow senescence

• Binds methylated DNA at cell division \rightarrow Methylgenome replication

SAMe:SAH insufficiency (low methionine, folate, choline, oxidative stress, etc.) \rightarrow

DNMT1 fails to methylate promoter of (life long) repressed genes \rightarrow

• Oncogene activation • Inflammatory gene up regulation

DNMT1 fails to methylate DNMT3 promoter → DNMT3 transcription → Inappropriate methylation of beneficial genes → "Silencing" of anti-cancer and anti-inflammatory genes ⇒

Distortion of Methylgenome (degenerative disease and malignancy)

VIABLE YELLOW AGOUTI MOUSE (Avy/a)

VIABLE YELLOW AGOUTI MOUSE (Avy/a)

AGOUTI MOUSE

♥ Female Viable Yellow Agouti mice (Avy/a) mated with (a/a) males

Provide to dams at conception \rightarrow weaning:

- Standard chow ad lib
- Chow with methylation support
- High methyl support chow

Diet Component	Methyl Support	High Methyl Support
Choline (gm/kg)	5	15
Betaine (gm/kg)	5	15
Folic acid (mg/kg)	5	15
B12 (mg/kg)	0.5	1.5
Methionine (g/kg)	-	7.5
Zinc (mg/kg)	_	150

Evaluate Avy/a offspring for Agouti phenotype

AGOUTI MOUSE

GENISTEIN and AGOUTI EXPRESSION

♥ Female (a/a) mice

Two weeks pre mating with male Avy/a mice \rightarrow weaning of the pups

Place on:

- Standard chow
- Genistein supplemented chow (250 mg/kg chow)

At 21 days of life evaluate (Avy/a) pups for agouti expression

GENISTEIN and AGOUTI EXPRESSION

Persistent Organic Pollutants

Ligate estrogen receptor

Persistent

Cross placenta \rightarrow Bioconcentration

Epigenomic effect

♥ Female (a/a) mice

Place on:

- Standard (phytoestrogen-free) chow
- Chow with BPA 50 mg/kg
- Chow with BPA + methyl supplements
- Chow with BPA + genistein 250 mg/kg

Two weeks pre-mating with (Avy/a) male mice \rightarrow weaning of pups

Evaluate pups for Agouti phenotype at 10 weeks

MATERNAL DIET and ADAPTIVE SATIETY

♥C57BL/6J mice

Offer ad lib high fat (highly palatable) diet → Increased caloric intake and DIO • Progeny predisposed to DIO

Provide to healthy male and female mice ad lib consumption of:

- Standard chow (10% fat)
- HFD (60% calories from fat)
 - ♣ 83% females and 80% males \rightarrow Hyperphagia and DIO

Switch HFD/DIO females to standard diet \rightarrow

- Reduced caloric intake
- 12% weight loss over 8 months; still overweight (25 vs. 21 gm.)
- Still insulin insensitive, and hyperlipidemic

MATERNAL DIET and ADAPTIVE SATIETY

Cross HFD/DIO females with lean, standard chow males

Prior to conception \rightarrow weaning place HFD/DIO females on standard chow diet

At weaning, place pups on HFD \rightarrow

- 80% male pups developed DIO with IR and hyperlipidemia
- 57% female pups developed DIO

43% female pups resistant to HFD induced DIO

- Weight and caloric intake similar to females on standard diet
- Hyperphagic response to high fat diet (expected) did not occur
- Glucose tolerance and lipid status nearly normal

Diet change in HFD/DIO mice during pregnancy and lactation \rightarrow

- Epigenomic protection vs. DIO
- Positive effect on satiety mechanism

ESTROGEN RECEPTOR GENE METHYLATION

Estrogen ligation of ER receptor \rightarrow altered expression of multiple genes

Methylation (of CpG islands within) ER gene promoter \rightarrow inactivates ER receptor

Estrogen ligation of promoter methylated ER \rightarrow physiologic effect attenuated/lost

ER receptor present in arterial wall

• ER activity less in vessels with atherosclerosis

ER receptor negative breast cancer \approx ER promoter is methylated

ER receptor promoter methylation:

- Increases with age
- Increases with age in normal colonic mucosa
- Universally present in colonic neoplasms

Is ER receptor methylation a link between aging and CV Dz and malignancy?

ESTROGEN RECEPTOR GENE METHYLATION

♥Tissue specimens from men and women undergoing CABG or DCI

ER promoter methylation (gene inactivating)

- Increases with age in men and women
- More prominent in plaque vs. aortic tissue

ESTROGEN RECEPTOR GENE METHYLATION

ER methylation in VSMCs \rightarrow

- Loss of estrogen growth inhibition effect
- Loss of benefit from ERT
- Increased risk for CADz

ESTROGEN, HOMOCYSTEINE, and DNA METHYLATION

- ♥ 13 healthy post-menopausal women
 - None on HRT
 - None taking B vitamins

Baseline studies

Randomize to receive over eight weeks:

- CEE 0.625 mg/day
- Placebo

Repeat baseline measurements

After four-week washout cross-over to other treatment

Double blind protocol followed

ESTROGEN, HOMOCYSTEINE, and DNA METHYLATION

	Placebo	ERT
Folate (nmol/l)	10.8	11.8
B12 (pmol/l)	420	395
B6 (nmol/l)	54	33

MERCURY and POLAR BEAR DNA METHYLATION

♥ 47 Polar Bears harvested by Greenland Inuit subsistence hunters

Analyze Medulla oblongata levels of:

- Mercury
- DNA methylation

MERCURY and POLAR BEAR DNA METHYLATION

FOLIC ACID and DNA METHYLATION

- ♥ 31 patients with colorectal adenoma by colonoscopy
 - No history (or family history) of colorectal malignancy
 - No B12 deficiency
 - No inflammatory bowel disease

Baseline measurements

- Lab studies
- Morphologically normal colonic mucosa

Randomize to receive over 16 weeks:

- Folic Acid 400 mcg/day
- Placebo

Repeat baseline measurements

• Rectal vs. colonic biopsy

FOLIC ACID and DNA METHYLATION

FOLIC ACID and DNA METHYLATION

SAMe METHYL TRANSFER REACTIONS

Enzyme	Substrate and Effect
DNA Methyl Transferases	Alters DNA Transcription (Bookmarking)
Synthetic Reactions	Generation of Carnitine
Protein Methyl Transferases (PRMT)	Alters Enzyme Activity (PGC-1 $\alpha \rightarrow$ PPAR $\alpha \rightarrow$ FA Oxidation)
Catechol-O-Methyl Transferase	Inactivates Catecholamines
	Methylates 2-OH and 4-OH Estrogens
COMT	Metabolizes Bioflavonoids
PEMT Phosphatidylethanolamine N-Methyl Transferase	Generation of Phosphatidylcholine
GAMT Guanidinoacetate N-Methyl Transferase	Generation of Creatine
GNMT Glycine-N-Methyl Transferase	SAMe \rightarrow 5,10-MethyleneTHF

GLYCINE N-METHYL TRANSFERASE

 $\begin{array}{rcl} SAMe + Glycine & \longrightarrow & Sarcosine (Methylglycine) + SAH \\ & GNMT \end{array}$

Sarcosine + THF \longrightarrow Glycine + 5,10-Methylene THF Sarcosine Dehydrogenase

SAMe blow off valve \Rightarrow Shuttles CH₃ away from SAMe and towards Methyl-folate/DNA synthesis

GLYCINE N-METHYL TRANSFERASE

Not directly stimulated by high SAMe

Negatively regulated (inhibited) by Methyl-folate

High SAMe inhibits MTHFR \rightarrow Low Methyl-folate \rightarrow Disinhibiton of GNMT

 \Rightarrow Shift from SAMe reformation to 5,10-Methylene THF

SAMe METHYL TRANSFER REACTIONS

Enzyme	Substrate and Effect
DNA Methyl Transferases	Alters DNA Transcription (Bookmarking)
Synthetic Reactions	Generation of Carnitine
Protein Methyl Transferases (PRMT)	Alters Enzyme Activity (PGC-1 $\alpha \rightarrow$ PPAR $\alpha \rightarrow$ FA Oxidation)
Catechol-O-Methyl Transferase	Inactivates Catecholamines
	Methylates 2-OH and 4-OH Estrogens
COMT	Metabolizes Bioflavonoids
PEMT Phosphatidylethanolamine N-Methyl Transferase	Generation of Phosphatidylcholine
GAMT Guanidinoacetate N-Methyl Transferase	Generation of Creatine
GNMT Glycine-N-Methyl Transferase	SAMe \rightarrow 5,10-MethyleneTHF

GUANIDINOACETATE N-METHYL TRANSFERASE (GAMT)

GAMT $GAA + SAMe \longrightarrow Creatine + SAH$

GAMT Stimulated by GAA Not inhibited by Creatine

Arginine Glycine Amidino Transferase (AGAT) Amidino group of arginine is transferred to glycine, forming guanidinoacetate (GAA) & ornithine (Inhibited by Creatine)

A High [ATP] is the Driving Force Underlying all Cellular Functions

As [ATP] falls, one by one, cellular functional mechanisms become depressed.

ATP... A Renewable Energy Source

When oxygen, calories and co-factors are available...

 $ATP \longrightarrow Work + ADP + P_i \implies ADP + P_i + energy \longrightarrow More ATP$

When oxygen is not available (as in heart disease and/or exercise)...

 $ATP \longrightarrow Work + ADP + P_i \implies ADP + P_i + \frac{no}{energy} \longrightarrow \frac{no more}{ATP}$ $PCr + ADP \longrightarrow Cr + ATP$ $ADP + ADP \longrightarrow ATP + AMP$ $AMP \longrightarrow Adenosine + Pi$

Adenosine diffuses out of the cell and is lost

When oxygen is re-supplied...

Oxidative Phosphorylation + Pi + no more ADP \rightarrow No ATP

♥ Male Sprague-Dawley rats (250-300 gm.)

Ad lib chow and water intake

Baseline measurements

Supplement chow with:

- Creatine monohydrate 0.4%
- Guanidinoacetate 0.36%

Sacrifice at two weeks and evaluate:

- Plasma creatine
- Muscle creatine metabolites

AGAT GAA GAMT \rightarrow CREATINE and SAH \Rightarrow Hcy

SAMe \rightarrow GNMT \rightarrow Sarcosine \rightarrow 5,10MeTHF

♥ Incubate hepatocytes with Methionine +/- other substances

♥ Ten 24-28 year old male athletes

Record at baseline:

- Homocysteine
- MTHFR genotype

Treat all with creatine 5 gm/day

- No additional B vitamins
- Diet and activity level unchanged

Repeat homocysteine level at 30 days

- ♥ 16 healthy volunteers (young adults mean age 30 years)
 - Mean Homocysteine 6.7 umol/l
 - Normal folate, B6, and B12 levels

Treat all with Folate 400 mcg, B6 6 mcg, and B12 2 mg over four weeks

Record Homocysteine level

Randomize to receive over an additional four weeks:

- Ongoing B Vitamin supplementation
- B Vitamins + Creatine 2.2-5.1 gm/day (daily creatine excretion x 2)

Repeat homocysteine level at four weeks

Creatine group:

- Homocysteine decreased in 7/8
- 18-27% decrease in 4/8

Control group:

- Homocysteine decreased in 3/8
- Only by 1-9%

CREATINE and CONGESTIVE HEART FAILURE

- ♥ 20 male patients with stable CHF
 - Mean age 65 years
 - 70% ischemic and 25% dilated, and 5% valve disease
 - NYHA 2.9
 - Furosemide 260 mg/day

Baseline exercise capacity (handgrip strength and endurance)

Randomize to receive over five days:

- Creatine 5 gm qid
- Placebo qid

Repeat baseline measurements

Double blind protocol followed

CREATINE and CONGESTIVE HEART FAILURE

CREATINE and CONGESTIVE HEART FAILURE

CREATINE and LIPID CONTROL

♥ 34 subjects with hyperlipidemia

Baseline studies

Randomize to receive over eight weeks:

- Creatine 5 gm qid x 5 days with 5 gm bid to follow
- Placebo (flavored) at same schedule

Repeat measurements at weeks four, eight, and twelve

Double blind protocol followed

CREATINE and LIPID CONTROL

CREATINE and LIPID CONTROL

- Creatine spares SAMe \rightarrow Phosphatidylcholine
- Creatine reduces SAH and Homocysteine formation
- Homocysteine
 - Decreases expression of AMPK
 - Increases expression of HMG Co-A Reductase
- SAH (lower SAMe:SAH) compromises fatty acid oxidation

SAMe METHYL TRANSFER REACTIONS

Enzyme	Substrate and Effect
DNA Methyl Transferases	Alters DNA Transcription (Bookmarking)
Synthetic Reactions	Generation of Carnitine
Protein Methyl Transferases (PRMT)	Alters Enzyme Activity (PGC-1 $\alpha \rightarrow$ PPAR $\alpha \rightarrow$ FA Oxidation)
Catechol-O-Methyl Transferase	Inactivates Catecholamines
	Methylates 2-OH and 4-OH Estrogens
COMT	Metabolizes Bioflavonoids
PEMT Phosphatidylethanolamine N-Methyl Transferase	Generation of Phosphatidylcholine
GAMT Guanidinacetate N-Methyl Transferase	Generation of Creatine
GNMT Glycine-N-Methyl Transferase	SAMe \rightarrow 5,10-MethyleneTHF

PHOSPHATIDYL ETHANOLAMINE N-METHYL TRANSFERASE

PEMT

Phosphoethanolamine + 3 SAMes — Phosphatidylcholine + 3 SAHs

Phosphatidylcholine:

- Cell membrane
- Lipid metabolism
- Acetylcholine

PHOSPHATIDYL ETHANOLAMINE N-METHYL TRANSFERASE

Phosphphatidylcholine \rightarrow Choline \rightarrow Betaine (TMG) \Rightarrow BHMT pathway

Generate metabolic product and promote SAMe reformation

PHOSPHATIDYLCHOLINE and HOMOCYSTEINE

- ♥ Forty eight healthy men
 - None taking B vitamins, PC, choline, or betaine
 - None with Hcy > 26 umol/l

Study the 26/48 with elevated Hcy (11-23.1 umol/l)

Mean Hcy 14.7 umol/l

Baseline measurements

Randomize to receive over two weeks:

- 34 gm PPC (1/2 dose bid with meals) to provide 2.6 gm choline
- 25 gm placebo oil (same fatty acid composition)

Repeat baseline measures and cross over to opposite regimen (after 2 week washout)

Double blind protocol followed

PHOSPHATIDYLCHOLINE and HOMOCYSTINE

CYSTATHIONINE BETA SYNTHASE (CBS)

Trans-Sulfuration Pathway Gatekeeper

CYSTATHIONINE BETA SYNTHASE (CBS)

Serine + Homocysteine \longrightarrow Cystathionine P-5-P Cystathionine \longrightarrow Cysteine + Ammonia Cystathionine Gamma Lyase

Down stream production of:

- Cysteine and Glutathione
- Taurine and Sulfate
- Hydrogen sulfide
- Alpha-ketobutyrate

CYSTATHIONINE BETA SYNTHASE

Serine + Homocysteine -----> Cystathionine P-5-P Cystathionine -----> Cysteine + Ammonia Cystathionine Gamma Lyase

Up regulated by:

- Oxidative stress (H₂O₂)
- Inflammatory cytokines (TNF-alpha)
- SAMe (Methionine load)
- Hyperglycemia
- Serine (Glycine)
- Danshensu

Down regulated by:

- Absence of the above
- Cysteine
- Insulin

CYSTATHIONINE BETA SYNTHASE (CBS)

Serine + Homocysteine \longrightarrow Cystathionine P-5-P Cystathionine \longrightarrow Cysteine + Ammonia Cystathionine Gamma Lyase

CBS Loss of Function (Kilmer McKully MD)

 $Hcy > 50 \rightarrow High SAH \rightarrow Low SAMe:SAH:$

- Methylation blocked
- Low glutathione and cysteine \rightarrow Oxidative stress
- Low taurine and sulfate \rightarrow Impaired detoxification

 \Rightarrow Premature atherosclerosis and neurologic disease

CYSTATHIONINE BETA SYNTHASE (CBS)

CBS Gain of Function

- Oxidative/Inflammatory stress
- CBS C699T (10-fold up regulation)
- CBS A360A (less powerful)

Hcy remethylation (via MTR and BHMT) to SAMe compromised Excess Sulfite (neurotoxic) and sulfate (fight or flight \rightarrow RAS) Hydrogen sulfide \rightarrow Brain fog and platelet activation Glutamate \rightarrow Excitotoxicity Ammonia \rightarrow BH4 used up in ammonia metabolism High cysteine and glutathione \rightarrow Impaired detoxification (?) Predisposition to asthma and GERDz

CYSTATHIONINE BETA SYNTHASE (CBS)

CYSTATHIONINE BETA SYNTHASE (CBS)

Interconversion compromised by metals (Lead)

Result is Glutamate Excess

 \rightarrow MSG-like Excitotoxicity

SULFITE OXIDASE

Sulfite + H2O \longrightarrow Sulfate

Down regulation not common \rightarrow Sulfite excess

Co-factor depletion common \rightarrow Sulfite excess

Molybdenum key co-factor

Boron, Hydroxy-B12, and Vitamin E Succinate accelerate SUOX activity

Support Sulfite Oxidase when CBS up regulated

Sulfite worse than Sulfate

SULFATE EXCESS

"Sulfates" \approx SH-bearing molecules involved in detoxification

High interstitial levels compromise up take across cell membrane \rightarrow

Impaired endogenous detoxification

Dr. Yasko found

Strong link between

CBS and Autism

and related

Neurodevelopmental Disorders

CYSTATHIONINE BETA SYNTHASE (CBS)

- 1. Most important abnormality
- 2. Most challenging to address
- 3. BHMT and MTHFR A1298C amplify pathophysiology \Rightarrow

CBS C699T or CBS A360A

BETAINE-HOMOCYSTEINE METHYLTRANSFERASE (BHMT)

Homocysteine + Trimethylglycine \longrightarrow Methionine + Dimethylglycine BHMT (Zn)

"Back Door Reaction"

Direct remethylation of Homocysteine to Methionine

"Pulls" Homocysteine away from CBS "Drain"

BHMT defects thus "Push" Homocysteine down the CBS "Drain"

BETAINE and HOMOCYSTEINE

- ♥ 132 healthy subjects
 - None taking B vitamins
 - None with Hcy > 26 umol/l

Study the 76/132 with highest Hcy (8.4-22.2 umol/l)

Mean Hcy 10.7 umol/l

Baseline measurements after one week run in period

Randomize to receive over six weeks (1/2 dose in water bid):

- Placebo
- Betaine 1500 mg
- Betaine 3000 mg
- Betaine 6000 mg

Repeat measurements at weeks two and six

Double blind protocol followed

BETAINE and HOMOCYSTEINE

BETAINE and HOMOCYSTEINE

5,10-METHYLENE TETRAHYDROFOLATE REDUCTASE (A1298C)

Compromises "backward" conversion of

5-Methyl Folate (5-Methyl THF)→ 5,10-Methylene Tetrahydrofolate MTHFR 5-Methyl Folate + BH2→ 5,10-Methylene THF + BH4

MTHFR A1298C aggravates CBS up regulation induced BH4 depletion

RECOGNITION of CBS UP REGUALTIONS

Low Homocysteine

• Normal Homocysteine with MTHFR and MTRR abnormalities

Sickest functionally ill patients:

- Autistic spectrum disorders
- Multiple chemical sensitivities
- Fibromyalgia and chronic fatigue

Sensitivities to:

- Alcohol and high sulfite/sulfate foods/supplements/pharmaceuticals
- MSG
- DMSA and DMPS
- B vitamins
- Post-prandial arrhythmia

Lab tip offs:

- Low molybdenum, serine, and B6
- Elevated taurine, cysteine, glutamate, and ammonia
- Elevated tyrosine, phenylalanine, and tryptophan with
- Low dopamine, norepinephrine, or serotonin or low HVA and VMA

64 y/o female with "Lone Atrial Fib"

Structurally normal heart, normotensive, & no sleep apnea

Sensitive to MSG and "allergic" to sulfa

GERDz and tendency to asthma

Homocysteine only 6.6

Element Reference Range		Reference Range	
Lead	0.018	<= 0.048 mcg/g	
Mercury	0.0062	<= 0.0039 mcg/g	
Antimony	0.001	<= 0.002 mcg/g	
Arsenic	0.021	<= 0.071 mcg/g	
Cadmium (0.000	<= 0.001 mcg/g	
Tin	(d)	<= 0.0009 mcg/g	

Amino Acid	R	Reference Rang	
Ageice	(19)	10-64	
Histolike	(29)	296-1,136	
lasieusine	0	6 24-69	
Leadine	۲	30-87	
Lysine	0	45-295	
Nettionne		30-82	
Phonylelurene	۲	26-71	
Tauńne		1,787 68-538	
Theorine	(12)	65-252	
Тедиореля	(2)	28-111	
Valice	3	23-61	

Amino Acid		Reference Ran
Alarsina		140-436
Asperagine	0	42-132
Asperio Acid		80 35-89
Oysacine		100 21-78
Cytáne	۲	26-78
y-Aminolastyric Acid	۲	e=35
Giutarric Add	200	521
Obterire		172-670
Proline	10	2-18
Tyrosine	Ø	33-124

Intermo	diary Meta	bolite	\$
B Vitamin Markers			erence Range
a Azsinoadipic Azid	(3)		11-73
e-Antino-N-Jouhite Acid	(3)		9.49
8-Antroisobutyric Acid		101	22-192
Cystationini 🔄			6-33
3 Metryhistoire	10	in)	131-318
Urea Cycle Markers			
Anteria	(350	2	14.0-49.0 minol/g-preatining
Cituline		۲	12:45
Ontes	•		4-21
Ures •	(1	e)	168-465 mms/g creatining
Glycine/Serine Meta	bolites		
Glycine	1.100		429-3,306
Serine	28		187-558
Enassiarine	218		205-514
Phosphoethanobraine	()		18-70
Phosphosenne	۲		28-63
Saroosina	(5	cr 43

Oxidative Stress Markers			
		Reference Range	
Glutathione (whole blood)		1,681 7=669 nicromol/L	
Lipid Percorides (urine)	8,1	<=10.0 micromol/g Creat.	
8-OHdG (urine)	13	<=16 mcg/g Creat.	
Coenzyme Q10, Ubiquinone (plasma)	0.66	0.43-1.49 mcg/mL	

• Decrease ammonia production/absorption (spare BH4)

Restrict animal protein "Nothing with Eyes" diet Caveat #1 → Protein malnutrition Caveat #2 → Weight gain and insulin insensitivity

Charcoal at bedtime (Magnesium prn constipation)

Yucca with food and resolve dysbiosis

Ammonia/CBS Support siRNA Products

Urea Cycle stimulation with LOLA \Rightarrow

Use ammonia neutralizing supplements to liberalize dietary protein restriction

Asses efficacy with 24 hour urine for ammonia and taurine

Clinical judgment important

HEPATIC ENCEPHALOPATHY

Low protein diet (protein malnutrition)

Decrease ammonia absorption

- Lactulose
- Rifaxamin

Increase ammonia metabolism

- IV Phenylbutyrate
- Oral Sodium Benzoate
- L-Ornithine/L-Aspartate

• Decrease ammonia production/absorption (spare BH4)

Restrict animal protein "Nothing with Eyes" diet Caveat #1 → Protein malnutrition Caveat #2 → Weight gain and insulin insensitivity

Charcoal at bedtime (Magnesium prn constipation)

Yucca with food and resolve dysbiosis

Ammonia/CBS Support siRNA Products

Urea Cycle stimulation with LOLA

Use ammonia neutralizing supplements to liberalize dietary protein restriction

Asses efficacy with 24 hour urine for ammonia and taurine

Clinical judgment important

• Decrease sulfate burden

Restrict animal protein "Nothing with Eyes" diet

Limit high sulfur/sulfate/sulfite foods

Limit high sulfate nutritionals and pharmaceuticals \Rightarrow

CBS Support siRNA Products

Botanical/Homeopathic Charged Sulphur Detox

Monitor urine sulfate (and sulfite if SUOX +/-)

Supplements High In Sulfur				
Taurine	Cysteine	Methionine	Glutathione	
Glucosamine Sulfate		Chondroitin Sulfate and MSM		
Epsom Salts		Magnesium Sulfate Cream		
Canned meats, Aged game		Homemade yeast breads		
DMSA and DMPS (Metal Chelators)		Milk thistle, Beyond C, and Heparin		

	Foods High In Sulfur				
Vegetables:					
Garlic, Onion Family	Kale	Collards	Pickles		
Cabbage	Brussel Sprouts	Kohlrabi	Broccoli		
Cauliflower	Bok Choy	Mizuna	Broccoli Rabe		
Chinese Cabbage	Napa Cabbage	Turnip / Rutabaga	Canola / Rape Seeds; Greens		
Mustard Seeds	Tatsoi	Radish	Daikon		
Horseradish	Japanese Horseradish	Arugula	Watercress		
Peas	Spinach				
Fruits:					
Raspberry	Cranberry	Currents	All Dried Fruit		
Others:					
Vinegar (especially if	prepared from wine)				
Alcohol Beverages (especially wine; not vodk		ta - beer is less of an	issue, especially German beer)		
Soft Drinks	Animal Products	Dairy	Eggs		
Brazil Nuts	Peanuts	Soy			

Sulfamethoxazole/Trimethoprim, diuretics other than spironolactone Alcohol (except potato based Vodka) DMSA and DMPS <u>Sulfites and Chronic Disease</u>, by Rick Williams

• Decrease sulfate burden

Restrict animal protein "Nothing with Eyes" diet

Limit high sulfur/sulfate/sulfite foods

Limit high sulfate nutritionals and pharmaceuticals

CBS Support siRNA Products

Botanical/Homeopathic Charged Sulphur Detox

Monitor urine sulfate (and sulfite if SUOX +/-)

• Support Sulfite Oxidase (SUOX)

Molybdenum 150 mcg/day

• Minimize dairy (Xanthine Oxidase)

Hydroxy-B12 2000 mcg/day sl

Boron 3 mg/day

Vitamin E Succinate 400 IU/day

Limit B-6 (P-5-P less of an issue)?

Monitor urine sulfite & sulfate if SUOX +/-

• Rebalance GABA:Glutamate

Avoid MSG and Excitotoxic foodstuffs \Rightarrow

Supplement with:

- GABA 500-1000 mg bid (if COMT +/+ or +/-)
- Zen (GABA + Theanine) if COMT WT

Remove metals (comprise GABA:Glutamate)

	Sources o	of Excitotoxins		
Glutamate	Glutamic acid, glutamine, and MSG. High levels are found in foods such as per			
	tomatoes, parmesan cheese, milk, mushrooms, fish, and many vegetables			
Aspartate	Aspartame, NutraSweet			
	Other "Name	s" for Excitotoxins		
Monosodium Glutama	ite	Glutamate	Natural Flavor(s)	
Maltodextrin	Carrageenan	Gelatin	Spice(s)	
Seasoning(s)	Seasoned Salt	Dough Conditioner(s)	Isolate	
Autolyzed Yeast	Autolyzed Yeast Extract	Autolyzed Anything	Broth	
Stock	Soup Base	Chicken/Pork/Beef"Fl	avoring"	
Hydrolyzed Vegetable	Protein(HPV)	Hydrolyzed Plant Prote	ein	
Hydrolyzed Oat Flour		Hydrolyzed Anything	Yeast Extract	
Sodium <u>Caseinate</u>	Calcium Caseinate	Caseinate	Disodium Guanviate	
Disodium In <u>osinate</u>	Disodium <u>Caseinate</u>	Hydrolyzed Protein	Chicken/Pork/Beef"Base"	
Bouillon	Vegetable Gum	Plant Protein Extract	Smoke Flavoring(s)	
Malted Barley Flour	Malt Extract	Malt Flavoring(s)	Malted Barley	
Malted Anything	Textured Protein	Guar Gum	Soy Extract	
Soy Protein	Soy Protein Concentrate	Soy Sauce	Whey Protein	
Whey Protein Isolate	Whey Protein Concentrate	ate L-Cysteine		
Ajinomoto	Kombu Extract	Natural Flavoring(s)	Barley Malt	
	Foods with MSG (M	Ionosodium Glutama	te)	
Hydrolyzed Protein	Hydrolyzed Oat Flour	Sodium Caseinate / Cal	lcium Caseinate	
Gelatin	Glutamic Acid	Monosodium Glutamate		
Autolyzed Yeast or Y	east Extract			
	Possible S	ources of MSG		
Textured Protein	Carrageenan Or	Seasonings Or Spices	Flavorings Or Natural	
	Vegetable Gum		Flavorings	
Chicken, Beef, Pork,	Bouillon, Broth, Or Stock	Barley Malt, Malt	Whey Protein, Whey Prote	
Smoke Flavorings		Extract, Malt	Isolate, Or Concentrate	
-		Flavoring	-	

	Other So	urces of MSG			
Food From Fast-Food	Chains	OTC Medications	Chicken Pox Vaccine		
NutraSweet Binders and Fillers in Sup		plements	Prescription Medications		
	Foods wi	th Glutamates	-		
Doritos Prinzles KFC Fried Chicken Boar's Head Cold Cuts/H					
	-		Dogs		
Progresso Soups	Lipton Soups/Sauces	Gravy Master	Planter's Salted Peanuts		
Sausages / Processed	Processed Cheese Spread	Molasses	Supermarket Turkey And		
Meats / Cold Cuts			Chicken (Injected)		
Restaurant Gravy	Ramen Noodles	Bouillon	Instant Soup Mixes / Stocks		
Salad Dressings /	Salty, Powdered Dry	Flavored Potato Chips	Restaurants Soups Made		
Croutons	Food Mixes		From Soup Base		
Gelatin	Soy Sauce	Worcestershire Sauce	Kombu Extract		
Dry Milk Or Whey	Dough Conditioners	Body Builder Protein	Parmesan Cheese		
Powder		Mixes			
Fresh Produce	Some Spices	Skim, 1%, 2%, Non-	Whipped Cream Topping		
Sprayed With		Fat, Or Dry Milk	Substitutes		
Auxigro In The Field					
Non-Dairy Creamers	Chocolates / Candy Bars	Low-Fat/DietFoods	Cereals		
Baked Goods From	Frostings And Fillings	Catsup	Mayonnaise		
Bakeries					
Chili Sauce	Mustards	Pickles	Bottled Spaghetti Sauce		
Citric Acid Made	Canned And Smoked	Barbeque Sauce	Canned, Frozen, Or Dry		
From Processed Corn	Tuna, Oysters, Clams		Entrees And Potpies		
Fresh And Frozen	Flavored Teas, Sodas	Seasoned Anything	Some Bagged Salads And		
Pizza			Vegetables		
Tomato Sauce /	Egg Substitute	Flour	Canned Refried Beans		
Stewed Tomatoes					
Tofu And Other	Table Salts	Anything With Corn	Anything With Milk Solids		
Fermented Soy		Syrup Added			
Products					
AnythingFermented	Anything Vitamin	Anything Protein	Anything Enzyme Modified		
	Enriched	Fortified			
Anything Ultra-	Carmel	Pectin	Cornstarch		
Pasteurized	Flavoring/Coloring				
Flowing Agents	Xanthan Gum / Other	L-Cysteine			
	"Gums"				

• Rebalance GABA:Glutamate

Avoid MSG and Excitotoxic foodstuffs

Supplement with:

- GABA 500-1000 mg bid (if COMT +/+ or +/-)
- Zen (GABA + Theanine) if COMT WT

Remove metals (comprise GABA:Glutamate)

• Support BHMT

Trimethylglycine (TMG - Betaine) and Zinc (BHMT co-factor) • Caution if COMT +/- or +/+

Phosphatidylcholine (CV, hepatic, and neurologic disease)
30% SAMe "spent" in Phosphatidylcholine biosynthesis

Phosphatidylserine (Modulates high cortisol)

• Mineral support

Most of our patients are mineral deficient

Carry out 24 hour urine minerals or RBC mineral assessment

Be liberal with mineral supplementation

Repeat mineral assessment periodically

• Glutathione support

Biologically contraindicated?

• N-Acetyl Cysteine, Lipoic Acid, & Glutathione contain SH groups

Needless acupuncture Glutathione patch

- One patch every day or every other day (alternate with Carnosine)
- One patch, 6 hours/day, 6 days/week
- Watch for detox phenomena

Delay introduction of other Methyl Cycle supplements until CBS is under control

Methyl-Folate, Methyl-B12, and/or BH4

when Sulfate levels are High

 \rightarrow Honeymoon followed by a Crash

When urine sulfate and ammonia are under control:

- Lab evaluation
- Clinical judgment
- Genotype often \neq phenotype

Methyl-B12

Methyl-Folate

BH4

Start low and go slow

Watch urine sulfate levels and clinical response

Adverse clinical response?:

- Sulfate/ammonia overload
- Detox phenomena

♥ Male Sprague-Dawley rats (180-250 gm.)

IV administration of:

- Saline
- Danshensu 20 mg/kg
- Danshensu + Tolcapone (COMT inhibitor) 10 mg/kg

IV administration of:

- Saline
- Methionine 0.8 mmol/kg
- Methionine plus Danshensu 10 or 20 mg/kg

Daily IP administration of:

- Saline
- Danshensu 5 mg/kg
- Methionine 0.8 mmol/kg
- Methionine plus Danshensu

IP administration of methionine 0.8 mmol/kg/day over three weeks: Then administer single ip dose of:

- Saline
- Danshensu 20 mg/kg

IP administration over three weeks with:

- Saline
- Danshensu 5 mg/kg/day

Three day washout

Then administer single ip dose of methionine 0.8 mmol/kg/day

Danshensu lowers (elevated) homocysteine rapidly and persistently – How?

IP administration over three weeks with:

- Saline
- Danshensu 5 mg/kg/day
- Methionine 0.8 mmol/kg/day
- Danshensu + methionine:

Danshensu effect on Homocysteine:

- Short term rise in homocysteine (COMT-methylation)
- Rapid activation of CBS system
- Sustained increased expression of CBS enzymes
- Response related to burden placed on CBS system

♥ Six week old Wistar rats

Provide ad lib over 10 days:

- Standard chow
- Chow + 0.5, **1**, or 2% methionine

Standard chow over 7 days; then ip methionine at 100, 200, **300**, or 500 mg/kg

♥ Six week old Wistar rats

Provide ad lib over 7 days:

- Standard chow
- Chow + 1% methionine
- Chow + 1% methionine + 1% glycine
- Chow + 1% methionine + 1.4% serine

25C	🔀 25CM + 1.0% Gly
25C + 1.0% Met (25CM)	25CM + 1.4% Ser

♥ Six week old Wistar rats

Provide ad lib over 7 days:

- Standard chow
- Chow + 1% methionine
- Chow + 1% methionine + 1% glycine
- Chow + 1% methionine + 1.4% serine

♥ Six week old Wistar rats

All receive chow + 1% methionine, followed by 3 additional days of:

- Chow + 1% methionine
- Chow + 1% methionine + 2.5% glycine
- Chow + 1% methionine + 2.5% serine

♥ Six week old Wistar rats

All receive chow + 1% methionine, followed by 3 additional days of:

- Chow + 1% methionine
- Chow + 1% methionine + 2.5% glycine
- Chow + 1% methionine + 2.5% serine

Γ	0	25C + 1% Met
		25C + 1% Met + 2.5% Gly
	0	25C + 1% Met + 2.5% Ser

♥ Six week old Wistar rats

All receive standard chow over 7 days, followed by ip administration of:

- Saline
- Methionine 300 mg/kg
- Methionine 300 mg/kg + glycine 300 mg/kg
- Methionine 300 mg/kg + serine 420 mg/kg

Serine:

- Stimulates CBS to metabolize Hcy
- Stimulates SHMT to generate 5,10-THF to load MTHFR \rightarrow Methyl-folate for MTR
- Stimulates SHMT to generate glycine

Glycine:

- Lowers SAM via GNMT to relieve repression of MTHFR \rightarrow Methyl-folate for MTR
- Via GNMT generates 5,10-Methylene-THF to load MTHFR \rightarrow Methyl-folate for MTR
- Can be converted into serine

- ♥ Twenty four healthy men
 - Normal homocysteine, folate, and lipid values

One separate days (one week apart) provide each subject a morning meal:

- Low-protein meal fortified with 30 mg/kg methionine
- Low-protein meal + methionine + 60mg/kg serine
- Low-protein meal + methionine + 12 mg/kg cystine
- High protein meal containing:
 - ♦ 30 mg/kg methionine,
 - ♦ 60 mg/kg serine, and
 - ♦ 12 mg/kg cystine

All receive identical low protein lunch and dinners

Measure serum homocysteine $2 \rightarrow 24$ hours following AM test meal intake

Randomized cross-over protocol utilized

Serine \rightarrow Stimulates SHMT and CBS Full Meal:

- Slower absorption of methionine
- Serine and cysteine within test meal
- More methionine directed to protein synthesis (concomitant AAs)

Cysteine:

- Inhibits CBS pathway but homocysteine decreases?
- Increases remethylation pathways (MTR and BHMT)
- Cysteine-Homocysteine disulfide formation \rightarrow Enhanced clearance

NAC, FOLATE, HOMOCYSTEINE, and ENDOTHELIAL FN

- ♥ 60 hyperhomocysteinemic coronary patients
 - Homocysteine > 15 umol/l
 - > 50% stenosis one or more vessels

Baseline measurements:

- Fasting homocysteine
- Endothelial function (BA FMD)

Randomize to receive over eight weeks

- Folic acid 5 mg/day
- N-Acetylcysteine 600 mg/day

Repeat baseline measurements

Double blind protocol followed

NAC, FOLATE, HOMOCYSTEINE, and ENDOTHELIAL FN

♥ 40 healthy volunteers

- Mean age 44
- 20 male and 20 female

Baseline studies

Randomize to receive over four weeks:

- No therapy
- NAC 600 mg daily
- NAC 1,800 mg once daily

Repeat baseline studies

Washout over four weeks

Treat all with NAC 1,800 mg/day over eight weeks and repeat baseline studies

Double blind protocol followed

Glutathione precursor (renal & hepatic disease, nitrate tolerance; acetaminophen OD)

Mucolytic agent (splices SH bonds within mucus macromolecules)

Could NAC increase unbound proportion of Homocysteine?

Would this increase metabolism of plasma homocysteine and/or enhance renal excretion?

Homocysteine (total plasma)

All subjects received 1,800 mg/day weeks $8 \rightarrow 12$

Controls

NAC 900 mg

NAC 1,800 mg

Controls

Homocysteine = Free Homocysteine (30%) + Protein Bound Homocysteine (70%)

Homocysteine and N-Acetylcysteine both bear a -SH group

N-Acetylcysteine splices Homocysteine from –SH groups on circulating proteins

Homocysteine-SH-SH-N-Acetylcysteine

- More readily cleared by kidneys
- Possibly easier to metabolize

FISH OIL and HOMOCYSTEINE CONTROL

♥ 24 diabetic subjects with suboptimal lipid control

- Twelve months of Pravastatin 20 mg and Fenofibrate 200 mg/day
- Lipid values above target goals
- All on Metformin (mean dose 1500 mg/day)

Baseline studies

Add 3.6 gm/day omega-3 (57% EPA and 29% DHA) to medical program

Repeat baseline studies at three months

Then cross-over to 3.6 gm/day of olive oil for three months

Repeat measurements

Single blind protocol followed

FISH OIL and HOMOCYSTEINE CONTROL

FISH OIL and HOMOCYSTEINE CONTROL

SAMe as a THERAPEUTIC AGENT

SAMe and FOLATES in DEPRESSION

1/4th US population will experience depression within their lifetime

Folate deficiency:

- Increases risk of depression
- Present outright in 1/3rd depressed
- Reduced response to SSRIs
- Longer duration of symptoms
- Lower CSF folate, SAMe, and neurotransmitter levels

Institutionalized patients:

- Low folate \approx depression risk
- Low B12 folate \approx psychosis risk

Homocysteine:

- Fifth quintile homocysteine doubles risk
- Elevated in 52% depressed patients
- 36% risk increase if MTHFR TT vs. CC

SAMe in DEPRESSION

Folinic acid and Methyl-folate enhances response to SSRIs

Methyl-folate (high dose – up to 50 mg) mono-therapy effective

- ♥ 84 subjects
 - 46 inpatients with severe depression
 - 20 subjects with neurological disorders
 - 18 healthy volunteers

Record:

- Plasma folate and B12 and RBC folate
- Homocysteine
- CSF folate
- CSF SAMe
- CSF monoamine neurotransmitter metabolites
 - ◆ 5-HIAA (5-hydroxyindoleacetic acid)
 - ♦ HVA (homovanillic acid)
 - MHPG (3-methoxy-4-hydroxyphenyl glycol)

- •1/3rd of severely depressed are folate deficient \approx Elevated homocysteine
- Lower CSF monoamine metabolites and SAMe

SAMe in TREATMENT RESISTANT DEPRESSION

♥ 30 patients with inadequately controlled depression:

- HAM-D score of ≥ 14
- Adequate and stable dose of SSRI or Venlafaxine
 - Fluoxetine, Paroxetine, Citalopram $\geq 20 \text{ mg}$
 - Escitalopram $\ge 10 \text{ mg}$ Sertraline $\ge 50 \text{ mg}$
 - Venlafaxine \geq 75 mg
- Mean duration 20 months
- Mean lifetime major depression episodes of four

Baseline measurements

Treat all over six weeks with:

- SAMe tosylate 400 mg bid
- Increase to 800 mg bid at 4 weeks
- Drug and/or SAMe dose decreases permitted

Response – 50% reduction in HAM-D score vs. baseline Remission – HAM-D score ≤ 7

SAMe in TREATMENT RESISTANT DEPRESSION

77% completed six week trial

Side-effects nuisance in nature

7% discontinued due to intolerance

Homocysteine fell from 8.2 to 7.8 umol/l

Weight without change

Gastrointestinal	n
Constipation	50.0% (15)
Gastrointestinal upset	16.6% (4)
Diarrhea/gas	16.6% (4)
Decreased appetite	6.6% (2)
Musculoskeletal/Nervous	n
Headaches	13.3% (4)
Activation (anxiety, irritability)	10.0% (3)
Fatigue, sedation	10.0% (3)
Sleep disturbance	6.6% (2)

SAMe in TREATMENT RESISTANT DEPRESSION

	Baseline	Six Weeks
MGH Sexual Function Scale	22.8	20.6
Montgomery Depression Rating	23.2	13.9
Beck Depression Inventory	18.8	12.2

SAMe in TREATMENT RESISTANT DEPRESSION

SAMe in ACUTE LEAD TOXICITY

♥ Mice exposed to acute lead toxicity

One hour post-final lead injection begin 20 day program of:

- SAMe 20 mg/kg subcut daily
- SAMe 80 mg/kg po
- Saline subcut or po

Glutathione

 δ -Aminolevulinate Dehydrase

SAMe in ACUTE LEAD TOXICITY

Blood Lead

Fecal and Urine Lead

SAMe in CHRONIC LEAD TOXICITY

♥ Ten patients with chronic lead toxicity

Five receive 12 mg/kg IV daily over 20 days

Five receive 25-30 mg/kg po (divided into three doses/day) over 20 days

SAMe in CHRONIC LEAD TOXICITY

♥ 26 year old female architect involved in ceramic business

ICU by 2 weeks \rightarrow SAM 12 mg/kg IV daily over 20 days

Note lead rebound post-SAM therapy \rightarrow Brief drop in δ -ALA

SAMe in CHRONIC LEAD TOXICITY

♥ 65 year old male plumber

SAM 25-30 mg/kg po (divided into three doses/day) over 20 days

- 5/250 patients hospitalized with lead toxicity
 - Lived near clandestine smelter
 - Members of same family

Baseline studies

- Blood lead
- ALA-D

Treat over 22 days with IV SAM (12 mg/kg in 250 cc NS over four hours)

Monitor lab and clinical status

Erythrocyte δ- Aminolevulinate Dehydrase

Blood Lead

SAMe EFFECT on GLUTATHIONE in LIVER DISEASE

♥ Liver biopsy

- ♦ 15 controls undergoing laparoscopy for non-liver indication
- \blacklozenge 17 subjects with alcoholic liver disease
 - Etoh 150 gm/day $x \ge 3$ years

Randomize patients to receive over six months:

- ♦ SAMe 400 mg tid
- Placebo tid

♦7 with non-alcoholic liver disease; all receive SAMe

Repeat liver biopsy at six months in patients

SAMe EFFECT on GLUTATHIONE in LIVER DISEASE

SAMe EFFECT on GLUTATHIONE in LIVER DISEASE

SAMe vs. CELECOXIB in DJD

- ♥ 56 subjects with DJD of knee(s):
 - \geq 40 years of age
 - ACR criteria

Baseline measurements

Randomize to receive over eight weeks:

- SAMe 600 mg bid
- Celecoxib (COX-2 inhibitor) 200 mg/day

Repeat baseline studies

Cross-over to opposite treatment after one week washout

Double blind protocol followed

SAMe vs. CELECOXIB in DJD

Adverse Effects

	SAMe	Celecoxib
Patients	36	46
GI	4	6
Anxiety	5	4
Dyspepsia	1	3

SAMe vs. CELECOXIB in DJD

METHYL THIEVES and IATROGENIC HHcy

METHYL THIEVES and IATROGENIC HHcy

Drug	Нсу	Mechanism
Fibrates	\uparrow	Decrease in GFR; depletes TMG
Cholestyramine	\uparrow	Blunts folate and B12 absorption
Niacin	\uparrow	Uses methyl groups; blocks B6 synthesis
Metformin	\uparrow	Blocks B12 absorption
Insulin	\downarrow	\uparrow MTHFR > \downarrow CBS
Estradiol	↓ or↑	↑ PEMT and depletes B6
Testosterone	\uparrow	↑ Need for creatine
Methotrexate	\uparrow	Blocks DHFR
Dilantin	\uparrow	\downarrow MTHFR and MTR
Carbamazepine	\uparrow	Folate depletion
Cyclosporin	\uparrow	Decrease GFR and \downarrow MTHFR
Levodopa	\uparrow	Generation of SAH
NAC	\downarrow	Thiol-disulfide exchange

METHYL THIEVES and IATROGENIC HHcy

Drug	Нсу	Mechanism
PPIs and H ₂ Blockers	\uparrow	Blocks B12 absorption
OCPs	\uparrow	\downarrow B12, B6, folate, riboflavin, Vit C, & Zn
Alcohol	\uparrow	\downarrow MTR; compromises folate metabolism
Mercury	\uparrow	\downarrow MTR
Lead	\uparrow	Enzyme dysfunction
Aluminum	\uparrow	Enzyme dysfunction
Cadmium	\uparrow	Enzyme dysfunction
Organic Pollutants	\uparrow	Enzyme dysfunction
Diuretics	\uparrow	Lowers GFR; depletes B Vits
Spironolactone	No Δ	No effect
β-Blockers	\downarrow	Uncertain mechanism

- ♥ 22 male subjects with untreated hypertriglyceridaemia
 - None with creatinine > 110 umol/l (1.24 mg/dl)
 - None with thyroid disease

Baseline studies

Randomize to receive over six weeks:

- Fenofibrate 200 mg/day
- Gemfibrozil 900 mg/day

Washout over six weeks then cross-over to opposite treatment

Repeat baseline studies at 6, 12, and 18 weeks

	Gemfibrozil (900 mg/day)			Fenofibrate (200 mg/day)			p* tr
	Before	After	p *	Before	After	P*	gemt
Triglycerides (mmol/L)	7.7 (2.5-53.2)	4-1 (1-1-24-6)	0-046	6.5 (2.3-60.7)	4.2 (0.3-15.8)	0.001	0.21
HDL-cholesterol (mmol/L)	0.83 (0.46-1.89)	1.02 (0.43-1.71)	0-010	0.90 (0.40-1.69)	1.03 (0.54-1.80)	0.001	0.26
Total homocysteine (µmol/L)	12.9 (7.1-23.6)	12-4 (6-3-29-5)	0-592	10.7 (4.4-24.8)	14-4 (7-7-23-1)	0.001	0.00
Creatinine (µmol/L)	79 (50-110)	80 (55-109)	0-626	75 (41-107)	90 (61-120)	<0.001	0.00
Cystatin C (mg/L)	0.73 (0.57-1.48)	0.74 (0.59-1.71)	0.237	0.68 (0.54-1.56)	0.82 (0.63-1.56)	<0.001	0.04
Vitamin B6 (ng/mL)	10.1 (4.2-33.6)	11.7 (4.3-35.4)	0-948	11-3 (4-2-30-2)	11.1 (4.8-39.0)	0.029	0.02
Folate (ng/mL)	8.4 (3.6-11.6)	8-6 (3-6-11-1)	0-809	9.2 (2.6-12.4)	9.4 (3.6-12.2)	0.983	0.3
Cobalamin (pg/mL)	367 (170-1145)	382 (189-964)	0-481	386 (215-758)	421 (217-1087)	0.351	0.84
Creatine kinase (U/L)	123 (53-310)	120 (35-589)	0.775	124 (51-243)	131 (42-592)	0.656	0.6

TMG and POST-MI OUTCOMES

♥ Subjects with ACS - Measure TMG, DMG, and Hcy and correlate with outcome

 5^{th} quintile Homocysteine \rightarrow Increased risk of MI, CHF, and mortality

 5^{th} quintile DMG \rightarrow Increased risk of MI, CHF, and mortality

 1^{st} quintile TMG \rightarrow Increased risk of MI

5th quintile TMG → Increased risk of CHF
♦ High TMG ≈ impaired BHMT activity

 1^{st} and 5^{th} quintile TMG \rightarrow Increased BNP

FIBRATES DEPLETE TMG and INCREASE HOMOCYSTEINE

♥ Subjects with varying metabolic health

- Healthy volunteers
- Non-diabetics on Fibrate for hyperlipidemia
- Diabetic patients on Fibrate for hyperlipidemia
- Diabetic patients not on Fibrate
- Non-diabetics not on Fibrate

Measure renal excretion of betaine (TMG)

Correlate renal excretion of betaine with plasma homocysteine

FIBRATES DEPLETE TMG and INCREASE HOMOCYSTEINE

Plasma total homocysteine (µmol/L)

20

10

0

r = +0.66

p = 0.0001

 \circ^{\odot}

æ

 \odot

ംര

0 0

Urine betaine excretion (mmol/mole creatinine)

 \odot

 \odot

10

- Deplete TMG
 - \Rightarrow Increase homocysteine

 \odot

 \odot

00

 \odot

Θ

 \odot

 \odot

 \odot

 \odot

100

BETA BLOCKERS, SPIRONOLACTONE, and HOMOCYSTEINE

- ♥ 65 subjects with newly diagnosed hypertension
 - No prior meds
 - Otherwise good health

Baseline plasma homocysteine, folate, and B12

Randomize to receive over five months:

- Spironolactone 50 mg/day
- Metoprolol 100 mg/day
 - Double dose if BP control inadequate
 - ♣ 41% spironolactone went to 100 mg
 - ♣ 34% metoprolol advanced to 200 mg

Repeat baseline studies at 1 and 5 months

BETA BLOCKERS, SPIRONOLACTONE, and HOMOCYSTEINE

♥ Male Sprague-Dawley rats (120-150 gm.)

Standard chow (Niacin 47 mg/kg chow)

Supplement chow with:

- Niacin 400 mg/kg
- Niacin 4000 mg/kg

Evaluate at six weeks

Nutrient	Level/kg Chow
Niacin	47 mg
Methionine	2 gm
B-6	11 mg
Folate	1 mg
B-12	15 mcg

<u>Niacin</u>

Utilizes CH₃ in metabolism

Depletes B6

♥ Male Sprague-Dawley rats (120-150 gm.)

Standard chow (Niacin 47 mg/kg chow) and water

Supplement chow to provide:

- Niacin 4000 mg/kg
- Niacin 4000 mg/kg + B6 10 mg/kg

Evaluate at six weeks

B6 in NIACIN RELATED HYPERHOMOCYSTEINEMIA

• 25 post-menopausal women with homocysteine > 10 umol/l

Baseline studies

Randomize to receive over twelve weeks:

- Placebo
- Estradiol 4 mg/day po
- Estradiol 4 mg/day + Dydrogesterone 10 mg/day

Repeat baseline studies

Estradiol only group received Estradiol + Dydrogesterone x 14 days

Double blind protocol followed

FATTY ACID OXIDATIVE METABOLISM

SAMe METHYL TRANSFER REACTIONS

Enzyme	Substrate and Effect	
DNA Methyl Transferases	Alters DNA Transcription (Bookmarking)	
Synthetic Reactions	Generation of Carnitine	
Protein Methyl Transferases (PRMT)	Alters Enzyme Activity (PGC-1 $\alpha \rightarrow$ PPAR $\alpha \rightarrow$ FA Oxidation)	
Catechol-O-Methyl Transferase	Inactivates Catecholamines	
	Methylates 2-OH and 4-OH Estrogens	
COMT	Metabolizes Bioflavonoids	
PEMT Phosphatidylethanolamine N-Methyl Transferase	Generation of Phosphatidylcholine	
GAMT Guanidinoacetate N-Methyl Transferase	Generation of Creatine	
GNMT Glycine-N-Methyl Transferase	SAMe \rightarrow 5,10-MethyleneTHF	

SAMe and POST-TRANSLATIONAL ENZYME MODIFICATION

MePGC-1 \rightarrow PPAR α , ER α , ERR α & HNF-4 α

Protein Arginine Methyl Transferase
Histone Deacetylase \rightarrow Fatty Acid Oxidation \Rightarrow ATPPeroxisome Proliferator-Activated Receptor-Gamma Co-Activator-1

♥ Female Wistar rats

One month prior to mating \rightarrow weaning of pups place dams on:

- Standard chow
- B12 and folate-free chow

Evaluate pups at 21 days (and at 80 days with B Vitamin replete diet)

Parameters*	Control	Methyl donor deficiency	<i>p</i> value
Body weight (g)	40.4 ± 0.6	20.0 ± 1.6	<0.001
Liver (g)	1.5 ± 0.1	1.6 ± 0.1	0.471
Index liver weight/body weight	3.6 ± 0.1	8.5 ± 0.1	< 0.001
Glucose (mg/dl)	138.3 ± 3.8	75.4 ± 5.5	< 0.001
Vitamin B12 (pmol/L)	322.3 ± 56.0	127.1 ± 165.8	<0.001
Folate (nmol/L)	74.8 ± 18.5	35.4 ± 16.3	< 0.001
Homocysteine (µmol/L)	6.28 ± 0.92	17.36 ± 5.80	<0.001
Insuline (µU/ml)	26.1 ± 4.0	22.5 ± 2.6	0.4750
Total cholesterol (mmol/L)	2.7 ± 0.2	4.6 ± 0.3	< 0.001
Triglycerides (mmol/L)	0.4 ± 0.1	0.7 ± 0.1	< 0.001
Free fatty acids (mmol/L)	200.6 ± 34.9	884.8 ± 178.4	<0.001
AST (IU/L)	185.8 ± 13.4	1007.2 ± 270.1	< 0.001

Parameters*	Control	Methyl donor deficiency	<i>p</i> value
Vitamin B12 (pmol/mg protein)	2.3 ± 0.5	2.5 ± 0.5	0.614
Folate (nmol/mg protein)	1.2 ± 0.2	0.2 ± 0.1	0.001
SAM (nmol/g tissue)	37.8 ± 9.3	13.9 ± 6.6	0.001
SAH (nmol/g tissue)	11.2 ± 3.2	10.3 ± 5.3	0.769
SAM/SAH ratio	3.4 ± 0.6	1.8 ± 1.3	0.038
MTR (nmol/h/mg protein)	2.5 ± 0.3	0.6 ± 0.1	0.008
BHMT (nmol/h/mg protein)	7.0 ± 0.3	7.8 ± 1.4	0.691
Total lipids (µg/mg tissue)	65.9 ± 10.5	391.1 ± 183.4	<0.001
Cholesterol (µg/mg tissue)	0.3 ± 0.2	0.4 ± 0.2	0.271
Triglycerides (µg/mg tissue)	3.5 ± 1.2	21.3 ± 8.2	0.010

♥ Female Wistar rats

One month prior to mating \rightarrow weaning of pups place dams on:

- Standard chow
- B12, folate, and choline deficient chow

Evaluate pups at 21 days

Pup plasma values

Pup myocardial values

♥ 108 consecutive subjects presenting with CHF (CADz or DC)

- LVEF < 45%
- NYHA II-IV symptoms
- Symptoms > six months duration

Baseline data collection

Follow for three years

Mean homocysteine 12.5 umol/l

- Range 2.3-28.3
- HHcy (> 14) in 35%

HHcy strongest predictor of mortality (LVEF and albumin)

3-year survival 37% vs. 73% (level < 14)

♥ 358 patients undergoing angiography for stable CV symptoms

Coronary narrowing $\geq 50\%$	68%
EF < 40% (mean 44%)	47%
Pro-BNP > 250 pg/ml (mean 2308)	65%
Hcy > 12 mmol/l (mean 16.2)	88%
B-12 < 150 pmol/l (mean 347)	13%
MMA > 0.5 mmol/l (mean 0.51)	29%
Folate < 7 nmol/l (mean 11.4)	25%

HOMOCYSTEINE and NT-pro-BNP

♥ 662 older Sicilians (60-85 years) volunteering for screening study

Hy CV Dz	29%
BNP > 100 pg/ml (mean 43)	9%
Hcy > 12 mmol/l (mean 15.8)	74%
B-12 < 150 pmol/l (mean 350)	10%
MMA > 0.5 mmol/l (mean 0.74)	8%
Folate < 7 nmol/l (mean 13.8)	13%

	Cath Patients	Screening Subjects
Elevated BNP	65%	9%
Hcy Mean	16.2	15.8
Elevated Hcy	88%	74%
Folate	11.4	13.8
Low Folate	25%	13%
MMA	0.51	0.74
Elevated MMA	29%	8%
B-12	347	350
Low B12	13%	10%

Low B12 Present	MMA 5.8	MMA 0.23
Low Folate Present	Hcy 19.3	15.3

Cath Patients (1st vs. 4th Hcy Quartile)

Screening Subjects (1st vs. 4th Hcy Quartile)

Cath Patients

HOMOCYSTEINE INCREASED BNP

♥ Rat LV slices in superfusion chamber

Increase concentration of Hcy in superfusate

B VITAMIN THERAPY in HEART FAILURE

♥ 28 patient with CHF (ischemic etiology)

• LVEF $\leq 35\%$ • Mean age 75.4 years

• ACEI 100%, Statin 96%, β -Blocker 82%, Furosemide 64 mg/day

Baseline measurements; then randomize to one year of:

• Placebo

• Multinutrient supplementation

Nutrient	Daily dose (four capsules)	RDI	Upper safe limit for total daily intake
Calcium	250 mg	800 mg	2500 mg
Magnesium	150 mg ^a	300 mg	700 mg
Zinc	15 mg	15 mg	30 mg
Copper	1.2 mg	1.2 mg	9 mg
Selenium	50 µg	65 µg	450 μg
Vitamin A	800 µg	800 μg	3300 μg
Thiamine	200 mg ^a	1.4 mg	No limit
Riboflavin	2 mg	1.5 mg	No limit
Vitamin B ₆	200 mg ^a	2 mg	300 mg
Folate	5 mg ^a	200 µg	No limit
Vitamin B ₁₂	200 µg	1 μg	No limit
Vitamin C	500 mg ^a	60 mg	2000 mg
Vitamin E	400 mg ^a	10 mg	900 mg
Vitamin D	10 μg ^a	5 µg	25 µg
Co-enzyme Q10	150 mg ^a	15 mg	No limit

B VITAMIN THERAPY in HEART FAILURE

Mortality:

1/14 placebo (pneumonia)1/14 Vitamin (DVT → infection)

Furosemide dose:

 $64 \rightarrow 56 \text{ mg/day}$ Vitamin Group $65 \rightarrow 67 \text{ mg/day}$ placebo

B VITAMIN THERAPY in HEART FAILURE

B VITAMIN THERAPY in HEART FAILURE

B VITAMIN THERAPY in CHF

♥ 18 subjects with NT-proBNP > 200 pg/l

Baseline measurements

Randomize to receive over one year:

- 2.5 mg folate, 500 mcg B12, and 25 mg B6
- Placebo
- $\rightarrow 25\%$ decrease in Hcy

 \Rightarrow 26% decrease in NT-proBNP

♥ Male Sprague-Dawley rats

Baseline measurements and then feed over four weeks:

- Standard rat chow (0.7% methionine) \rightarrow Hcy 4.1 uM
- Standard chow + Berberine 5 mg/kg i.p. (final five days)
- High methionine (1.7%) chow \rightarrow Hcy 25 uM
- High methionine chow + Berberine 5 mg/kg i.p. (final five days)

Study effect on lipids and gene expression

Hcy (mimics low hepatic cholesterol) → SREBP → HMG-CoA Reductase Hcy → dephosphorylates AMPK → dephosphorylation of HMG-CoA ⇒ Increased cholesterol generation, secretion, and fatty liver

Berberine \rightarrow pAMPK \rightarrow pHMG-CoA

 \Rightarrow Decreased cholesterol generation, secretion, and resolution of fatty liver

♥ Male Sprague - Dawley rats:

Control rats: Free access to standard rat chow and water over 16 weeks (12% fat, 62% carb, and 16% protein)

High fat rats: Free access to high fat chow and water (51% fat, 33% carb, and 16% protein)

Berberine rats :

- High fat diet over 12 weeks
- At 8 weeks add Berberine 200 mg/kg/day to high fat diet

Sacrifice all and evaluate liver status and labs at 12 weeks

BERBERINE and HOMOCYSTEINE

High Fat Diet Increases:

- Homocysteine
- Body weight
- Cholesterol generation

High Fat Diet Decreases:

- LDL R expression
- apoE

Adverse effects neutralized by Berberine

FUNCTIONS of the METHYL CYCLE

Maintain (current health status) appropriate levels of:

- Pyrimidine and purine bases for DNA and RNA synthesis
- Antioxidant/Detox molecules glutathione, cysteine, taurine, & sulfate
- BH4 (tetrahydrobiopterin)
- Transferable methyl groups \approx High SAMe:SAH

HOMOCYSTEINE REDUCTION

Folic Acid (less effective if MTHFR 677C \rightarrow T) \rightarrow 5-Methyl Folate B12 (less effective if MTRR +) \rightarrow Methyl-B12 B6 (Pyridoxal-5 Phosphate, P-5-P, more effective) Riboflavin if MTHFR CT or TT TMG and Zinc to support BHMT Serine (Glycine) to support SHMT and CBS Resolve oxidative stress and improve kidney function Decrease dietary methionine (if excessive) Eliminate/neutralize methyl thieves (Alcohol, Niacin, Estradiol, Fibrates, Diuretics) Decrease Hcy generation (Creatine and Phosphatidylcholine) NAC, Fish Oil, Danshensu, & Estradiol

METHYL CYCLE KEY POINTS

Be suspicious of Methyl Cycle Defects

Your sickest patients likely harbor a CBS Up Regulation

Most of us need Methyl-Folate and Methyl-B12

B Vitamin Sensitivity \rightarrow Consider CBS and/or COMT abnormalities

Pertinent Testing :

- DNA testing (\$550 with or \$98 without interpretation)
- Support website for hard copies and brief SNIP interpretation
- Nutritional assessment (organic acids and nutritional minerals)
- Methyl Cycle intermediates: SAMe, SAH, THF, methyl-folate, folinic acid, methionine, cystathionine, cysteine, & glutathione
- Toxic burden assessment

Go out and help people who you couldn't help before!

REVIEW of the METHYL CYCLE

